

Exercise 1. Thanks to the Poincaré inequality, there exists a universal constant $C = C(\Omega)$ such that for all $u \in W_0^{1,2}(\Omega)$,

$$\|u\|_{L^2(\Omega)} \leq C \|\nabla u\|_{L^2(\Omega)}.$$

Since $f \in L^\infty(\Omega)$, we deduce by Cauchy-Schwarz inequality that

$$\left| \int_{\Omega} f(x)u(x)dx \right| \leq \|f\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)} \leq C \|f\|_{L^2(\Omega)} \|\nabla u\|_{L^2(\Omega)}.$$

Therefore, we deduce that for all $u \in W_0^{1,2}(\Omega)$, we have

$$\begin{aligned} E(u) &= \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} f u dx \geq \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - C \|f\|_{L^2(\Omega)} \|\nabla u\|_{L^2(\Omega)} \\ &\geq \frac{1}{4} \int_{\Omega} |\nabla u|^2 dx - C^2 \int_{\Omega} f^2 dx. \end{aligned}$$

where we used the elementary inequality $ab \leq \frac{1}{4}a^2 + b^2$ ($a, b \in \mathbb{R}$). Therefore, if $\{u_n\}_{n \in \mathbb{N}} \subset W_0^{1,2}(\Omega)$ is a minimising sequence, we deduce that

$$\frac{1}{4} \int_{\Omega} |\nabla u_n|^2 dx \leq E(u_n) + C^2 \int_{\Omega} f^2 dx,$$

which shows by the Poincaré inequality that $\{u_n\}_{n \in \mathbb{N}}$ is bounded in $W^{1,2}(\Omega)$. Therefore, up to a subsequence, there exists $u \in W^{1,2}(\Omega)$ such that $u_n \xrightarrow[n \rightarrow \infty]{} u$ and by the Rellich-Kondrachov theorem, we also have the strong convergence $u_n \xrightarrow[n \rightarrow \infty]{} u$ in $L^2(\Omega)$. Then, the weak convergence implies that

$$\int_{\Omega} |\nabla u|^2 \leq \liminf_{n \rightarrow \infty} \int_{\Omega} |\nabla u_n|^2 dx.$$

On the other hand, the strong convergence in L^2 shows that

$$\left| \int_{\Omega} f u dx - \int_{\Omega} f u_n dx \right| \leq \|f\|_{L^2(\Omega)} \|u_n - u\|_{L^2(\Omega)} \xrightarrow[n \rightarrow \infty]{} 0.$$

Since $E(u_n) \xrightarrow[n \rightarrow \infty]{} m$, we deduce that

$$E(u) \leq \liminf_{n \rightarrow \infty} E(u_n) = m,$$

which shows that u is a minimiser of E on $W_0^{1,2}(\Omega)$. A standard computation as done in the lecture notes shows that u solves (in the distributional sense) the equation

$$\begin{cases} \Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

We then say that u is the solution of the Dirichlet problem $\Delta u = f$ with Dirichlet boundary value. The unicity is trivial. If u_1 and u_2 are two solutions, the function $v = u_1 - u_2$ is harmonic ($\Delta v = 0$) and vanishes on the boundary, which shows by Stokes' formula that

$$\int_{\Omega} |\nabla v|^2 dx = \int_{\Omega} v \partial_{\nu} v d\mathcal{H}^{d-1} - \int_{\Omega} v \Delta v dx = 0.$$

Therefore, v is a constant function, but as v vanishes on the boundary, we deduce that $v = 0$.

Exercise 2. The proof is exactly similar and we omit it. We simply point out that two applications of the Poincaré inequality show that for all $u \in W_0^{2,2}(\Omega)$, we have

$$\int_{\Omega} u^2 dx \leq C \int_{\Omega} |\nabla u|^2 dx \leq C' \int_{\Omega} |\nabla^2 u|^2 dx.$$

Furthermore, we easily show that for all $u \in W_0^{2,2}(\Omega)$, we have

$$\int_{\Omega} (\Delta u)^2 dx = \int_{\Omega} |\nabla^2 u|^2 dx,$$

so the coercivity follows as before, and the rest of the proof is similar. To see that, for all $u \in C_c^{\infty}(\Omega)$ simply integrate by parts:

$$\begin{aligned} \int_{\Omega} |\nabla^2 u|^2 dx &= \sum_{i,j=1}^d \int_{\Omega} \left(\frac{\partial^2 u}{\partial x_i \partial x_j} \right)^2 dx \\ &= - \sum_{i,j=1}^d \int_{\Omega} \left(\frac{\partial u}{\partial x_i} \right) \frac{\partial}{\partial x_j} \left(\frac{\partial^2 u}{\partial x_i \partial x_j} \right) dx \\ &= - \sum_{i,j=1}^d \int_{\Omega} \left(\frac{\partial u}{\partial x_i} \right) \frac{\partial}{\partial x_i} \left(\frac{\partial^2 u}{\partial x_j^2} \right) dx \\ &= \sum_{i,j=1}^d \int_{\Omega} \left(\frac{\partial^2 u}{\partial x_i^2} \right) \left(\frac{\partial^2 u}{\partial x_j^2} \right) dx \\ &= \int_{\Omega} \left(\sum_{i=1}^d \frac{\partial^2 u}{\partial x_i^2} \right) \left(\sum_{j=1}^d \frac{\partial^2 u}{\partial x_j^2} \right) dx = \int_{\Omega} (\Delta u)^2 dx, \end{aligned}$$

where we used the theorem of Schwarz for smooth functions. The general result follows by density. Finally, the Euler-Lagrange is given by

$$\begin{cases} \Delta^2 u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \\ \partial_{\nu} u = 0 & \text{on } \partial\Omega \end{cases}$$

Integration by parts shows as above that if $v \in W_0^{2,2}(\Omega)$ is biharmonic ($\Delta^2 v = 0$), then $\Delta v = 0$ identically, and we can apply this result once more to deduce the uniqueness.

Exercise 3. 1. If $u \in W^{1,1}(I)$ and $u(1) = 1$ and $u(-1) = -1$, we deduce by the triangle inequality that

$$E(u) \geq \int_{-1}^1 |u'(x)| dx \geq \left| \int_{-1}^1 u'(x) dx \right| = |u(1) - u(-1)| = 2.$$

Therefore, we have $E(u) \geq 2$ for all $u \in W_g^{1,1}(I)$. Then, define for all $n \geq 1$

$$u_n(x) = \begin{cases} \operatorname{sgn}(x) & \text{for all } |x| > \frac{1}{n} \\ n x & \text{for all } -\frac{1}{n} \leq x \leq \frac{1}{n}. \end{cases}$$

Then $u_n \xrightarrow{n \rightarrow \infty} \text{sgn}$ in $L^1(I)$ and

$$E(u_n) = \int_{-\frac{1}{n}}^{\frac{1}{n}} n dx + \int_{-\frac{1}{n}}^{\frac{1}{n}} |u_n(x) - \text{sgn}(x)| dx \xrightarrow{n \rightarrow \infty} 2$$

as $u_n - \text{sgn}$ is a bounded function.

2. $E(u) = 2$ if and only if

$$\int_{-1}^1 |u(x) - \text{sgn}(x)| dx = 0,$$

which shows that $u(x) = \text{sgn}(x)$ for almost all $x \in [-1, 1]$. However, this function does not admit a continuous representative, which shows that by the Sobolev embedding theorem $W^{1,1}(I) \hookrightarrow C^0(I)$ that $u \notin W_g^{1,1}(I)$. In particular, E does not admit a minimiser in $W_g^{1,1}(I)$.

Exercise 4. 1. We can simply take $u_n(x) = \sin(nx) \sin(t)$.

2. The second part follows directly from the first chapter on the Euler-Lagrange equation: for all $\varphi \in C_c^\infty(\Omega)$, we have

$$\begin{aligned} E(u + \varphi) &= E(u) + \int_{\Omega} \left(\frac{\partial u}{\partial t} \cdot \frac{\partial \varphi}{\partial t} - \frac{\partial u}{\partial x} \cdot \frac{\partial \varphi}{\partial t} \right) dx dt + E(\varphi) \\ &= E(u) - \left[\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} \right] (\varphi) + E(\varphi). \end{aligned}$$

Exercise 5. Take

$$\xi_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \xi_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then, we have

$$\frac{1}{2} f_1(\xi_1) + \frac{1}{2} f_1(\xi_2) = 0 < f_1 \left(\frac{1}{2} \xi_1 + \frac{1}{2} \xi_2 \right) = f_1 \left(\frac{1}{2} \text{Id}_2 \right) = \frac{1}{16},$$

and likewise,

$$\frac{1}{2} f_2(\xi_1) + \frac{1}{2} f_2(\xi_2) = 1 < f_1 \left(\frac{1}{2} \xi_1 + \frac{1}{2} \xi_2 \right) = \frac{5}{4}.$$