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Exercise 1. Thanks to the Poincaré inequality, there exists a universal constant C = C(Ω) such that
for all u ∈ W 1,2

0 (Ω),

∥u∥L2(Ω) ≤ C ∥∇u∥L2(Ω) .

Since f ∈ L∞(Ω), we deduce by Cauchy-Schwarz inequality that∣∣∣∣∫
Ω

f(x)u(x)dx

∣∣∣∣ ≤ ∥f∥L2(Ω) ∥u∥L2(Ω) ≤ C ∥f∥L2(Ω) ∥∇u∥L2(Ω) .

Therefore, we deduce that for all u ∈ W 1,2
0 (Ω), we have

E(u) = 1
2

∫
Ω

|∇u|2dx −
∫

Ω
f u dx ≥ 1

2

∫
Ω

|∇u|2dx − C ∥f∥L2(Ω) ∥∇u∥L2(Ω)

≥ 1
4

∫
Ω

|∇u|2dx − C2
∫

Ω
f2dx.

where we used the elementary inequality ab ≤ 1
4 a2 + b2 (a, b ∈ R). Therefore, if {un}n∈N ⊂ W 1,2

0 (Ω) is a
minimising sequence, we deduce that

1
4

∫
Ω

|∇un|2dx ≤ E(un) + C2
∫

Ω
f2dx,

which shows by the Poincaré inequality that {un}n∈N is bounded in W 1,2(Ω). Therefore, up to a
subsequence, there exists u ∈ W 1,2(Ω) such that un ⇀

n→∞
u and by the Rellich-Kondrachov theorem, we

also have the strong convergence un −→
n→∞

u in L2(Ω). Then, the weak convergence implies that∫
Ω

|∇u|2 ≤ lim inf
n→∞

∫
Ω

|∇un|2dx.

On the other hand, the strong convergence in L2 shows that∣∣∣∣∫
Ω

f u dx −
∫

Ω
f un dx

∣∣∣∣ ≤ ∥f∥L2(Ω) ∥un − u∥L2(Ω) −→
n→∞

0.

Since E(un) −→
n→∞

m, we deduce that

E(u) ≤ lim inf
n→∞

E(un) = m,

which shows that u is a minimiser of E on W 1,2
0 (Ω). A standard computation as done in the lecture

notes shows that u solves (in the distributional sense) the equation{
∆u = f in Ω

u = 0 on ∂Ω.

We then say that u is the solution of the Dirichlet problem ∆u = f with Dirichlet boundary value. The
unicity is trivial. If u1 and u2 are two solutions, the function v = u1 − u2 is harmonic (∆v = 0) and
vanishes on the boundary, which shows by Stokes’ formula that∫

Ω
|∇v|2dx =

∫
Ω

v ∂νv dH d−1 −
∫

Ω
v ∆v dx = 0.

Therefore, v is a constant function, but as v vanishes on the boundary, we deduce that v = 0.
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Exercise 2. The proof is exactly similar and we omit it. We simply point out that two applications of
the Poincaré inequality show that for all u ∈ W 2,2

0 (Ω), we have∫
Ω

u2dx ≤ C

∫
Ω

|∇u|2dx ≤ C ′
∫

Ω
|∇2u|2dx.

Furthermore, we easily show that for all u ∈ W 2,2
0 (Ω), we have∫

Ω
(∆u)2dx =

∫
Ω

|∇2u|2dx,

so the coercivity follows as before, and the rest of the proof is similar. To see that, for all u ∈ C∞
c (Ω)

simply integrate by parts:∫
Ω

|∇2u|2dx =
d∑

i,j=1

∫
Ω

(
∂2u

∂xi∂xj

)2

dx

= −
d∑

i,j=1

∫
Ω

(
∂u

∂xi

)
∂

∂xj

(
∂2u

∂xi∂xj

)
dx

= −
d∑

i,j=1

∫
Ω

(
∂u

∂xi

)
∂

∂xi

(
∂2u

∂x2
j

)
dx

=
d∑

i,j=1

∫
Ω

(
∂2u

∂x2
i

)(
∂2u

∂x2
j

)
dx

=
∫

Ω

(
d∑

i=1

∂2u

∂x2
i

) d∑
j=1

∂2u

∂x2
j

 dx =
∫

Ω
(∆u)2dx,

where we used the theorem of Schwarz for smooth functions. The general result follows by density.
Finally, the Euler-Lagrange is given by 

∆2u = f in Ω
u = 0 on ∂Ω

∂νu = 0 on ∂Ω

Integration by parts shows as above that if v ∈ W 2,2
0 (Ω) is biharmonic (∆2v = 0), then ∆v = 0 identically,

and we can apply this result once more to deduce the uniqueness.

Exercise 3. 1. If u ∈ W 1,1(I) and u(1) = 1 and u(−1) = −1, we deduce by the triangle inequality
that

E(u) ≥
∫ 1

−1
|u′(x)|dx ≥

∣∣∣∣∫ 1

−1
u′(x)dx

∣∣∣∣ = |u(1) − u(−1)| = 2.

Therefore, we have E(u) ≥ 2 for all u ∈ W 1,1
g (I). Then, define for all n ≥ 1

un(x) =


sgn(x) for all |x| >

1
n

n x for all − 1
n

≤ x ≤ 1
n

.
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Then un −→
n→∞

sgn in L1(I) and

E(un) =
∫ 1

n

− 1
n

n dx +
∫ 1

n

− 1
n

|un(x) − sgn(x)|dx −→
n→∞

2

as un − sgn is a bounded function.

2. E(u) = 2 if and only if ∫ 1

−1
|u(x) − sgn(x)|dx = 0,

which shows that u(x) = sgn(x) for almost all x ∈]−1, 1[. However, this function does not admit a
continuous representative, which shows that by the Sobolev embedding theoerem W 1,1(I) ↪→ C0(I)
that u /∈ W 1,1(I). In particular, E does not admit a minimiser in W 1,1

g (I).

Exercise 4. 1. We can simply take un(x) = sin(nx) sin(t).

2. The second part follows directly from the first chapter on the Euler-Lagrange equation: for all
φ ∈ C∞

c (Ω), we have

E(u + φ) = E(u) +
∫

Ω

(
∂u

∂t
· ∂φ

∂t
− ∂u

∂x
· ∂φ

∂t

)
dx dt + E(φ)

= E(u) −
[

∂2u

∂t2 − ∂2u

∂x2

]
(φ) + E(φ).

Exercise 5. Take

ξ1 =
(

1 0
0 0

)
and ξ2 =

(
0 0
0 1

)
.

Then, we have

1
2f1(ξ1) + 1

2f1(ξ2) = 0 < f1

(
1
2ξ1 + 1

2ξ2

)
= f1

(
1
2Id2

)
= 1

16 ,

and likewise,

1
2f2(ξ1) + 1

2f2(ξ2) = 1 < f1

(
1
2ξ1 + 1

2ξ2

)
= 5

4 .
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